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Abstract. A proposal is given, of how to implement point interactions and boundary conditions
in the path integral. The starting point is a path-integral formulation of a Dirac particle in one
dimension. The implementation of a point interaction yields, by means of a perturbation expansion,
the corresponding Green function for a relativistic particle. In the non-relativistic limit several cases
can be distinguished depending on which of the four possibilities of the point interaction has been
chosen. By a proper combination of the various possibilities of implementing the point interaction,
the whole range of the four-parameter family of boundary conditions for point interactions can be
exploited, in the relativistic case as well as in the non-relativistic limit. In addition, making the
strength of the point interaction infinitely repulsive yields boundary conditions at finite points on
the real line. In particular, Dirichlet and Neumann boundary conditions emerge. The method is
illustrated with some examples.

1. Introduction

Boundary conditions are of inherent importance in the set-up of a physical problem. Solving
the Schr̈odinger or the Dirac equation without imposing a proper boundary condition makes
no sense and does not even define the relevant Hilbert space. For a well-defined Hilbert
space boundary conditions at infinity, i.e. the vanishing of the wavefunctions at infinity, are
usually sufficient. This kind of boundary condition is contained in the usual path-integral
formulation [1] in a homogeneous space for a regular potential in a natural way. Boundary
conditions connected with singular potentials require something different and can be taken
into account by using a functional weight formulation [2]. The single-valuedness conditions
for the quantum motion on spheres is taken into account by periodic boundary conditions
[2]. Boundary conditions at infinity, however, are a very specific idealization and for many
physical situations are not appropriate. Typical experimental situations require boundary
conditions at a finite distance from the origin, for instance, motion in a half-space [2–7],
in a box [7–9] or some boundary condition at a singular point [10, 11]. Here Dirichlet and
Neumann boundary conditions come into play as particular cases and can be incorporated
into the path integral by considering the infinite strength limit of point interactions. As
discussed in, for example, [6, 7, 12–18] point interactions, in turn, can be incorporated into
the path integral by, for example, a simpleδ-function perturbation. The path integral with
this perturbation can be evaluated by the summation of a perturbation expansion, giving in
the general case the energy-dependent Green function. The corresponding propagator can
be obtained only in specific cases, e.g. for free motion subject to a point interaction. The
whole procedure can be repeated to incorporate arbitrarily many point interactions. The
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limit of infinitely repulsive δ-function perturbations gives Dirichlet boundary conditions at
the location of the point interaction. Repeating the procedure, one can state the Green
function for a particle in a box, where an otherwise arbitrary well behaved potential may
be included.

The incorporation of a boundary condition in a quantum mechanical problem which goes
beyond the usual boundary conditions at±∞ is not trivial. In [11] a comprehensive approach
can be found for the particular case of point interactions: these models are explicitly solvable.
Point interactions represent some specific kind of boundary condition for the wavefunction. For
instance, the wavefunction is no longer continuous and differentiable continuous, but now has
a jump in its first derivative. In [11] this was performed for the free motion, including the usual
point interaction in terms of aδ-function, and the so-calledδ′-function in one dimension, point
interactions in two and three dimensions, and point interactions for the one-dimensional Dirac
particle. These models in one dimension belong to a four-parameter family of point interactions
[4, 8, 11]. A model with the particular emphasis on the hydrogen atom can be found in [19],
including many references. The general feature of the solution for the corresponding Green
function of a quantum mechanical model with a point interaction is Krein’s formula. It consists
of a term representing the Green function of the unperturbed model without a point interaction,
and a second term which takes into account the boundary conditions, i.e. the point interaction.
However, the model of point interactions is appealing, because in the limit of infinite coupling
strength specific boundary conditions emerge, i.e. depending on the chosen point interaction,
Dirichlet or Neumann boundary conditions emerge. In a successive way then any combination
of boundary conditions can be modelled, and all four parameters of the four-parameter family
can be taken into account.

In this contribution I would like to demonstrate, on the one hand, how one can incorporate
the four-parameter family of the one-dimensional relativistic point interaction into the path
integral, and one the other hand, summarize its applications in non-relativistic quantum
mechanics. It generalizes previous attempts to incorporate point interactions into the path
integral by giving a prescription as to how to incorporate all four parameters of the four-
parameter family into the path-integral formalism. Point interactions are often used to simplify
more complicated interactions by a simple solvable model, whether they are quark–quark
interactions in elementary particle physics [11] (and references therein), or electron–lattice
interactions in solid state physics [11, 20, 21]. The non-relativistic limit includes the usualδ-
function perturbation [6, 13, 14, 22, 23], theδ′-function perturbation [11, 17] or more generally
the four-parameter family of boundary conditions on the real line [10, 24]. Dirichlet and
Neumann boundary conditions follow from limiting cases, where the strength of the point
interaction becomes infinitely repulsive.

The relevant one-dimensional Dirac operator has the following form (σx,y,z are the Pauli
matrices):

D = c h̄
i

d

dx
⊗ σx +mc2⊗ σz =

 mc2 c
h̄

i

d

dx

c
h̄

i

d

dx
−mc2

 (1)

which acts on two-component wavefunctions. Incorporating a potentialU(x)we obtain in the
usual way for the Hamiltonian in terms of the position and momentum operators

H = cpx ⊗ σx +mc2⊗ σz +U(x). (2)
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U(x) is in general a 2×2 matrix, of course. Now, we consider a matrix-valued point interaction
for the one-dimensional Dirac particle

U(x) = (1lgV + σzgS) δ(x − a) (3)

where the quantitiesgV andgS correspond to the so-called vector and scalar coupling strength
in the weak interaction. We have already written explicitly theδ-potential behaviour of the
potential, respectively the point-like behaviour of the potential. However, an arbitrary peak
function aroundx = a with supp= {0} also does the job. We must consider the boundary
condition for a wavefunctionψ(x) approachingx = a from the left and from the right,
respectively. The emerging boundary condition can now be described in the following way,
e.g. [25]:

ψ(a+) = P exp

(∫ a+

a−
K(x) dx

)
ψ(a−) (4)

whereK(x) = (h̄/i)σx
(
mc2 ⊗ σz + U − E), and whereP denotes a Dyson-type ordering

operator. This specific form of the potential gives rise to a boundary condition of the spinor
wavefunctions at the locationx = a of the point interaction according to

ψ(a+) = exp

(
h̄

i
σx(gV + σzgS)

)
ψ(a−). (5)

Evaluating the eigenvalues of the exponentiated term we finally obtain [25],

ψ(a+) = Λψ(a−) Λ = cos
√
g2
V − g2

S

(
1 −iα−
−iα+ 1

)
(6)

where one has introducedα± = (gV ±gS) tan
√
g2
V − g2

S

/√
g2
V − g2

S . From this representation
it can be seen that there exists a four-parameter family self-adjoint extension of the
corresponding Dirac Hamiltonian with a point interaction. (a) In the case wheregV = gS we
haveα− = 0 andα+ = 2gV . This yields in the non-relativistic limit aδ-function perturbation.
(b) In the case wheregV = −gS we haveα+ = 0 andα− = 2gV . This yields in the non-
relativistic limit aδ′-function perturbation. (c) If|gV | 6= |gS | andgV , gS are real we obtain a
matrix according to

3 =
(

cosλ i sinλ
i sinλ cosλ

)
with λ =

√
g2
V − g2

S . (d) Finally, we find for|gV | 6= |gS | andgV , gS imaginary a matrix
according to

3 =
(

coshλ sinhλ
sinhλ coshλ

)
with λ = −i

√∣∣g2
V − g2

S

∣∣ [25–27].
By a proper combination it is therefore possible to cover all the relevant parameters in this

family with cases (a) and (b) as the building blocks. The corresponding point perturbations
are additive and therefore it is possible to first evaluate a perturbative expansion for one point
interaction, and in the second step for the other. Consequently, I can construct by a subsequent
consideration of each of the four members of the family the Green function of the entire
problem. Taking the non-relativistic limit then gives the corresponding case of the four-
parameter family of the boundary conditions at a point on the real line [10, 24]. Some of the
results have already been announced in [17].



1678 C Grosche

In the following the technique to achieve this is outlined. I concentrate on the two most
important cases ofgV = gS andgV = −gS . In the next section I present the path-integral
representation for the one-dimensional Dirac particle according to Ichinose and Tamura [28]
which is based on an idea of Feynman and Hibbs [1]. I incorporate point interactions and derive
the corresponding Green functions, in particular for the particle (or electron) and anti-particle
(or positron) component. They turn out to correspond to aδ- andδ′-function perturbation in
the non-relativistic limit. In a second step, I calculate combinations of these point interactions,
i.e. two point interactions in the particle component, two point interactions in the anti-particle
component, and a combination of a point interactions in the particle component and in the anti-
particle component. Including off-diagonal point interactions, these are the building blocks
for further evaluation in the non-relativistic limit; and, in addition, in the limit for making the
strength of the point interactions infinitely repulsive, in order to obtain boundary conditions in
half spaces.

In section 3 I give some explicit formulae for the non-relativistic limit, i.e. I consider
c→∞. It turns out that in this limit the point interaction in the particle component yields a one-
dimensionalδ-potential, and the point interaction in the anti-particle yields aδ′-potential. In
particular, for theδ′-potential we obtain automatically in the limiting procedure a regularization
prescription. This regularization is necessary due to the singularity of the second derivative of
the usual one-dimensional particle Green functionG taken at equal arguments. In the following,
we obtain by taking the limit of taking the coupling of the point interaction infinitely repulsive
Dirichlet and Neumann boundary conditions, respectively. I present some relevant formulae
for the corresponding boundary conditions on the real line, i.e. non-relativistic particles moving
in half-spaces, respectively for non-relativistic particles moving in boxes. However, not every
particular case is considered.

In section 4 I present some of the corresponding propagators explicitly including the case of
motion in a box with various boundary conditions. Whereas all the formulae of the preceding
sections allow the incorporation of an arbitrary smooth potential and the calculation of the
corresponding Green function, only the free-particle case gives the propagator, or Feynman
kernel, explicitly. Section 5 contains a summary.

2. Perturbation expansions for a Dirac particle

The general method for the time-ordered perturbation expansion is quite simple. Let us assume
that we are given a potentialW(x) = V (x) + Ṽ (x) in the path integral and suppose thatW is
so complicated that a direct path integration is not possible. However, the path integralK(V )

corresponding toV (x) is assumed to be known. We expand the integrand of the path integral
containingṼ (x) in a perturbation expansion aboutV (x). The result has a simple interpretation
on the lattice: the initial kernel corresponding toV propagates during the short-time intervalε

unperturbed, then it interacts with̃V in order to propagate again in another short-time interval
ε unperturbed, and so on, up to the final state. One then obtains the following series expansion
(Feynman and Hibbs [1], Devreeseet al [13, 29, 30] (x ∈ RD):

K(x′′,x′; T ) = K(V )(x′′,x′; T ) +
∞∑
n=1

(
− i

h̄

)n( n∏
j=1

∫ tj+1

t ′
dtj

∫ ∞
−∞

dxj

)
×K(V )(x1,x

′; t1− t ′) Ṽ (x1)K
(V )(x2,x1; t2 − t1)× · · ·

×Ṽ (xj−1)K
(V )(xj ,xj−1; tj − tj−1) Ṽ (xj )K

(V )(x′′,xj ; t ′′ − tj ). (7)

Here I have ordered time ast ′ = t0 < t1 < t2 < · · · < tn+1 = t ′′ and paid attention to the
fact thatK(tj − tj−1) denotes the retarded propagator and thus is different from zero only
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if tj > tj−1. Several problems in path integration which are definitely non-Gaussian, non-
Besselian or non-Legendrian can be addressed by a perturbation expansion approach. Let
us mention the incorporation of point interactions (Bauch [22], Goovaertset al [13, 29] and
[6, 7, 14–17]) and boundary conditions at finite distances [6, 7]. Also 1/r- [18, 30] and 1/r2-
potentials [18] can be treated by means of an exact summation of a perturbation expansion.
Particularly in the case of the Coulomb potential this perturbation expansion is an expansion
in powers of the coupling of the Coulomb interaction strength [30].

We consider the path-integral representation for the matrix-valued kernelK(V )(T ) for the
one-dimensional Dirac equation [1, 31–33] (px = −ih̄∂x)

K(V )(x ′′, x ′; T ) =
〈
x ′′
∣∣∣∣ exp

[
− i

h̄
T
(
cσxpx +mc2σz + V (x)

)]∣∣∣∣x ′〉
=
∫ x(t ′′)=x ′′

x(t ′)=x ′
Dν(t) exp

(
− i

h̄

∫ t ′′

t ′
V (x) dt

)
. (8)

V may be a matrix-valued potential, e.g. equation (3). The support property of the measure
Dν [28] is defined in such a way that the motion it is describing selects paths ofN steps each
of lengthcε (ε = T/N in the lattice representation) that start atx ′ in the directionα, and end
atx ′′ in the directionβ, whereα andβ take the values ‘right’ and ‘left’. The path integration
then is a summation over all reversings of directions [1]. In other words,Dν may be regarded
as a conditional Wiener measure for the one-dimensional Dirac particle [28]. ForV ≡ 0 the
free motion of a Dirac particle emerges. We introduce the Green functionG(V )(E) with its
matrix representation

G(V )(x ′′, x ′;E) =
(
G
(V )
11 (x

′′, x ′;E) G
(V )
12 (x

′′, x ′;E)
G
(V )
21 (x

′′, x ′;E) G
(V )
22 (x

′′, x ′;E)

)
. (9)

We first consider aδ-function perturbation in the electron (= ‘+’) component, i.e.

Ṽ = −α
(

1 0
0 0

)
δ(x − a).

We obtain by inserting it into the path integral and summing the perturbation expansion

G(δ+)(x ′′, x ′;E) = G(V )(x ′′, x ′;E)− 1

G
(V )
11 (a, a;E)− 1/α

×
(
G
(V )
11 (a, x

′;E)G(V )
11 (x

′′, a;E) G
(V )
11 (a, x

′;E)G(V )
12 (x

′′, a;E)
G
(V )
21 (a, x

′;E)G(V )
11 (x

′′, a;E) G
(V )
21 (a, x

′;E)G(V )
12 (x

′′, a;E)

)
(10)

= 1

G
(V )
11 (a, a;E)− 1/α

×


∣∣∣∣G(V )

11 (x
′′, x ′;E) G

(V )
11 (a, x

′;E)
G
(V )
11 (x

′′, a;E) G(V )
11 (a, a;E)− 1/α

∣∣∣∣ ∣∣∣∣G(V )
12 (x

′′, x ′;E) G
(V )
11 (a, x

′;E)
G
(V )
12 (x

′′, a;E) G(V )
11 (a, a;E)− 1/α

∣∣∣∣
∣∣∣∣G(V )

21 (x
′′, x ′;E) G

(V )
21 (a, x

′;E)
G
(V )
11 (x

′′, a;E) G(V )
11 (a, a;E)− 1/α

∣∣∣∣ ∣∣∣∣G(V )
22 (x

′′, x ′;E) G
(V )
21 (a, x

′;E)
G
(V )
12 (x

′′, a;E) G(V )
11 (a, a;E)− 1/α

∣∣∣∣

 .
(11)
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Similarly for the positron (= ‘−’) component, i.e.

Ṽ = (4m2βc2/h̄2
) ( 0 0

0 1

)
δ(x − b)

(the constants have been chosen for convenience,β̃ = 4m2βc2/h̄2),

G(δ−)(x ′′, x ′;E) = G(V )(x ′′, x ′;E)− 1

h̄2/4m2c2β +G(V )
22 (b, b;E)

×
(
G
(V )
12 (b, x

′;E)G(V )
21 (x

′′, b;E) G
(V )
12 (b, x

′;E)G(V )
22 (x

′′, b;E)
G
(V )
22 (b, x

′;E)G(V )
21 (x

′′, b;E) G
(V )
22 (b, x

′;E)G(V )
22 (x

′′, b;E)

)
(12)

= 1

G
(V )
22 (b, b;E) + 1/β̃

×


∣∣∣∣G(V )

11 (x
′′, x ′;E) G

(V )
12 (b, x

′;E)
G
(V )
21 (x

′′, b;E) G(V )
22 (b, b;E) + 1/β̃

∣∣∣∣ ∣∣∣∣G(V )
12 (x

′′, x ′;E) G
(V )
12 (b, x

′;E)
G
(V )
22 (x

′′, b;E) G(V )
22 (b, b;E) + 1/β̃

∣∣∣∣
∣∣∣∣G(V )

21 (x
′′, x ′;E) G

(V )
22 (b, x

′;E)
G
(V )
21 (x

′′, b;E) G(V )
22 (b, b;E) + 1/β̃

∣∣∣∣ ∣∣∣∣G(V )
22 (x

′′, x ′;E) G
(V )
22 (b, x

′;E)
G
(V )
22 (x

′′, b;E) G(V )
22 (b, b;E) + 1/β̃

∣∣∣∣

 .
(13)

For point interactions in the off-diagonal elements we obtain for

Ṽ = −(mcγ1/h̄)

(
0 1
0 0

)
δ(x − a)

(the constants have been chosen for convenience,γ̃1 = mcγ1/h̄)

G(γ1)(x ′′, x ′;E) = G(V )(x ′′, x ′;E)−G(V )
21 (a, a;E)− h̄/mcγ1

×
(
G
(V )
11 (a, x

′;E)G(V )
21 (x

′′, a;E) G
(V )
11 (a, x

′;E)G(V )
22 (x

′′, a;E)
G
(V )
21 (a, x

′;E)G(V )
21 (x

′′, a;E) G
(V )
21 (a, x

′;E)G(V )
22 (x

′′, a;E)

)

= 1

G
(V )
21 (a, a;E)− 1/γ̃1

×


∣∣∣∣G(V )

11 (x
′′, x ′;E) G

(V )
11 (a, x

′;E)
G
(V )
21 (x

′′, a;E) G(V )
21 (a, a;E)− 1/γ̃1

∣∣∣∣ ∣∣∣∣G(V )
12 (x

′′, x ′;E) G
(V )
11 (a, x

′;E)
G
(V )
22 (x

′′, a;E) G(V )
21 (a, a;E)− 1/γ̃1

∣∣∣∣
∣∣∣∣G(V )

21 (x
′′, x ′;E) G

(V )
21 (a, x

′;E)
G
(V )
21 (x

′′, a;E) G(V )
21 (a, a;E)− 1/γ̃1

∣∣∣∣ ∣∣∣∣G(V )
22 (x

′′, x ′;E) G
(V )
21 (a, x

′;E)
G
(V )
22 (x

′′, a;E) G(V )
21 (a, a;E)− 1/γ̃1

∣∣∣∣

 .
(14)

Similarly for

Ṽ = −(mcγ2/h̄)

(
0 0
1 0

)
δ(x − a)
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(the constants have been chosen for convenienceγ̃2 = mcγ2/h̄) we obtain

G(γ1)(x ′′, x ′;E) = G(V )(x ′′, x ′;E)−G(V )
12 (a, a;E)− h̄/mcγ2

×
(
G
(V )
12 (a, x

′;E)G(V )
11 (x

′′, a;E) G
(V )
12 (a, x

′;E)G(V )
12 (x

′′, a;E)
G
(V )
22 (a, x

′;E)G(V )
11 (x

′′, a;E) G
(V )
22 (a, x

′;E)G(V )
12 (x

′′, a;E)

)

= 1

G
(V )
12 (a, a;E)− 1/γ̃2

×


∣∣∣∣G(V )

11 (x
′′, x ′;E) G

(V )
12 (a, x

′;E)
G
(V )
11 (x

′′, a;E) G(V )
12 (a, a;E)− 1/γ̃2

∣∣∣∣ ∣∣∣∣G(V )
12 (x

′′, x ′;E) G
(V )
12 (a, x

′;E)
G
(V )
12 (x

′′, a;E) G(V )
12 (a, a;E)− 1/γ̃2

∣∣∣∣
∣∣∣∣G(V )

21 (x
′′, x ′;E) G

(V )
12 (a, x

′;E)
G
(V )
11 (x

′′, a;E) G(V )
12 (a, a;E)− 1/γ̃2

∣∣∣∣ ∣∣∣∣G(V )
22 (x

′′, x ′;E) G
(V )
22 (a, x

′;E)
G
(V )
12 (x

′′, a;E) G(V )
12 (a, a;E)− 1/γ̃2

∣∣∣∣

 .
(15)

Let us assume for simplicity that the componentG
(V )
11 (E) in (9) is known andV is a scalar,

then I can derive

G
(V )
12 (x, y;E) =

c

mc2 − V +E
pxG

(V )
11 (x, y;E) (16)

G
(V )
22 (x, y;E) =

−1

mc2 − V +E

(
c2

mc2 − V +E
pxpy G

(V )
11 (x, y;E) + δ(x − y)

)
. (17)

From these representations it is easily seen that ifG
(V )
11 (E) is of O(1) for c → ∞, G(V )

12 (E)

andG(V )
22 (E) vanish according to∝ 1/c and∝ 1/c2 for c→∞, respectively.

In the next step we want to incorporate more than just one relativistic point interaction. Let
us first study the case where we have twoδ-function perturbations in the electron component
with strengthα1, α2 located atx = a1, x = a2, respectively. We obtain for the(11)-component

G
(δ+,δ+)
11 (x ′′, x ′;E) =

∣∣∣∣∣∣∣∣
G
(V )
11 (x

′′, x ′;E) G
(V )
11 (x

′′, a1;E) G
(V )
11 (x

′′, a2;E)
G
(V )
11 (a1, x

′;E) G(V )
11 (a1, a1;E)− 1/α1 G

(V )
11 (a1, a2;E)

G
(V )
11 (a2, x

′;E) G
(V )
11 (a2, a1;E) G

(V )
11 (a2, a2;E)− 1/α2

∣∣∣∣∣∣∣∣∣∣∣∣ G(V )
11 (a1, a1;E)− 1/α1 G

(V )
11 (a1, a2;E)

G
(V )
11 (a2, a1;E) G

(V )
11 (a2, a2;E)− 1/α2

∣∣∣∣
.

(18)

Let us abbreviate

Dα1α2(a1, a2;E) =
∣∣∣∣ G(V )

11 (a1, a1;En)− 1/α1 G
(V )
11 (a1, a2;En)

G
(V )
11 (a2, a1;En) G

(V )
11 (a2, a2;En)− 1/α2

∣∣∣∣. (19)

The energy levels are determined by the poles of the denominator and given implicitly by

Dα1α2(a1, a2;En) = 0. (20)
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For the(12)-component I found

G
(δ+,δ+)
12 (x ′′, x ′;E) = 1[

G
(V )
11 (a2, a2;E)− 1/α2

]
Dα1α2(a1, a2;E)

×

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣G(V )
12 (x

′′, x ′;E) G
(V )
12 (x

′′; a2;E)
G
(V )
11 (a2, x

′E) G
(V )
11 (a2, a2;E)− 1/α2

∣∣∣∣ ∣∣∣∣G(V )
12 (x

′′, a1;E) G
(V )
12 (a2, a1;E)

G
(V )
11 (x

′′, a2;E) G(V )
11 (a2, a2;E)− 1/α2

∣∣∣∣
∣∣∣∣G(V )

11 (a1, x
′;E) G

(V )
11 (a2, x

′;E)
G
(V )
11 (a1, a2;E) G(V )

11 (a2, a2;E)− 1/α2

∣∣∣∣ Dα1α2(a1, a2;E)

∣∣∣∣∣∣∣∣∣∣∣
.

(21)

It is not possible to rewrite the determinant in the determinant into just one 3× 3-determinant
as for the(11)-component because the number of relevant entries is too large. The other
components are similar.

Let us finally combine a point interaction in the electron component with a point interaction
in the positron component. The(11)-component has the form

G
(δ+,δ−)
11 (x ′′, x ′;E) = 1[

G
(V )
22 (b, b;E) + 1/β̃

]
Dαβ̃(a, b;E)

×

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣G(V )
11 (x

′′, x ′;E) G
(V )
12 (x

′′; b;E)
G
(V )
21 (b, x

′E) G
(V )
22 (b, b;E) + 1/β̃

∣∣∣∣ ∣∣∣∣G(V )
11 (x

′′, a;E) G
(V )
12 (b, a;E)

G
(V )
21 (x

′′, b;E) G(V )
22 (b, b;E) + 1/β̃

∣∣∣∣
∣∣∣∣G(V )

11 (a, x
′;E) G

(V )
12 (b, x

′;E)
G
(V )
21 (a, b;E) G(V )

22 (b, b;E) + 1/β̃

∣∣∣∣ Dαβ̃(a, b;E)

∣∣∣∣∣∣∣∣∣∣∣
. (22)

Here I have abbreviated

Dαβ̃(a, b;E) =
∣∣∣∣ G(V )

11 (a, a;En)− 1/α G
(V )
11 (a, b;En)

G
(V )
11 (b, a;En) G

(V )
11 (b, b;En) + 1/β̃

∣∣∣∣. (23)

The energy levels are determined by the poles of the denominator and given implicitly by
Dαβ̃(a, b;En) = 0. The other components are similar. The special case that the point
interaction is proportional to 1l orσz has been discussed in [27] and is in accordance with
our results. In this case the point perturbations of each component contribute additively to the
Green function.

3. The non-relativistic limit

We consider the limitc → ∞ in G(δ±). From the non-relativistic limit of the path integral
[1, 28] we know that we have the following limit, cf (16):∫ x(t ′′)=x ′′

x(t ′)=x ′
Dν(t) exp

(
− i

h̄

∫ t ′′

t ′
V (x) dt

)
→
(

1 0
0 0

)∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (x)] dt

}
(24)

whereV (x) is the non-relativistic limit ofV (x). In the language of stochastic processes, the
measureDν yields in the limit c → ∞ the measureDW [x] (W being a Wiener process,
taken in real time, respectively, Wick rotated) which is interpreted in the usual way as
D exp

(
(i/h̄)

∣∣ ∫ t ′′
t ′ ẋ

2 dt
)
, whereD is interpreted as the usual ‘Feynman measure’ [3]. In the
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present case we find [11, 26]V+(x)→ Vα = −αδ(x − a), andV−(x)→ Vβ = −βδ′(x − a),
respectively. We find that only the(1, 1) component in the Green functions remains finite, all
others vanish. Furthermore, we findG(δ+)

11 (E) → G(δ)(E) andG(δ−)
11 (E) → G(δ′)(E), where

G(δ)(E) is the Green function for a potentialV with the usualδ-function perturbation in non-
relativistic quantum mechanics, andG(δ′)(E) is the Green function for a potential problemV
with a δ′-function perturbation, respectively.

3.1. δ-functions

We consider the incorporation ofδ-function perturbations, i.e. aδ-function as an additional
potential located atx = a with strengthγ . Only a closed formula for the corresponding Green
function can be stated; an explicit result for the propagator can only be obtained in the simplest
or in some exceptional cases, e.g. forV ≡ 0. One obtains [14]

i

h̄

∫ ∞
0

dt eiET/h̄
∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (x) + γ δ(x − a)] dt

}
= G(V )(x ′′, x ′;E)− G

(V )(x ′′, a;E)G(V )(a, x ′;E)
G(V )(a, a;E)− 1/γ

. (25)

HereG(V )(E) denotes the Green function for the unperturbed problem (γ = 0). Possible
bound states are determined by the poles ofG(E), i.e. by the equationG(V )(a, a, En) = 1/γ .

3.2. δ′-functions

The next case incorporates aδ′-function perturbation. Taking the non-relativistic limit of
G
(δ−)
11 (E) one obtains for aδ′-function perturbation in the path integral the representation

i

h̄

∫ ∞
0

dt eiET/h̄
∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (x) + βδ′(x − a)] dt

}
= G(V )(x ′′, x ′;E)− G

(V )
,x ′ (x

′′, a;E)G(V )
,x ′′ (a, x

′;E)
Ĝ
(V )
,x ′x ′′(a, a;E) + 1/β

(26)

Ĝ(V )
,xy (a, a;E) =

(
∂2

∂x∂y
G(V )(x, y;E)− 2m

h̄2 δ(x − y)
)∣∣∣∣

x=y=a
. (27)

Note that in the path integral (26) the formal expression ‘G,xy(a, a;E)’ is automatically
regularized by the removal of an ultraviolet divergence. The divergence in the expression
∂x∂yG

(V ) for x − y = a is cancelled by the subtraction of the additionalδ-function. This
regularization prescription is not put in ‘by hand’ but isa result.
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3.3. Combination ofδ andδ′-functions

From the above considerations it is obvious how to obtain the Green function representation
of a combinedδ- andδ′-function perturbation. We find

i

h̄

∫ ∞
0

dt eiET/h̄
∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (x) + αδ(x − a) + βδ′(x − b)] dt

}

=

∣∣∣∣∣∣∣∣
G(V )(x ′′, x ′;E) G

(V )
,x ′ (x

′′, b;E) G(V )(x ′′, a;E)
G
(V )
,x ′′ (b, x

′;E) Ĝ
(V )
,x ′x ′′(b, b;E) + 1/β G

(V )
,x ′′ (b, a;E)

G(V )(a, x ′;E) G
(V )
,x ′ (a, b;E) G(V )(a, a;E)− 1/α

∣∣∣∣∣∣∣∣∣∣∣∣ Ĝ(V )
,x ′x ′′(b, b;E) + 1/β G

(V )
,x ′′ (b, a;E)

G
(V )
,x ′ (a, b;E) G(V )(a, a;E)− 1/α

∣∣∣∣
. (28)

Settinga = b yields a special case (of boundary conditions).

3.4. Dirichlet boundary conditions

The case of (Dirichlet) boundary conditions, respectively the motion in a half-space, have been
addressed by several authors in order to develop a method to incorporate them into the path
integral, e.g. Barut and Duru [34], Clarket al [5], Carreau [4], Grosche [6, 7], and Janke and
Kleinert [9]. In our formalism Dirichlet boundary conditions are obtained when we consider
in (25) the limitγ → −∞. This has the consequence that an impenetrable wall appears at
x = a. The result then is for the motion in the half-spacex > a, say, [6, 7]

i

h̄

∫ ∞
0

dt eiET/h̄
∫ x(t ′′)=x ′′

x(t ′)=x ′
D(D)(x>a)x(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (x)] dt

}
= G(V )(x ′′, x ′;E)− G

(V )(x ′′, a;E)G(V )(a, x ′;E)
G(V )(a, a;E) . (29)

Possible bound states are determined by the poles ofG(E), i.e. by the equation
G(V )(a, a, En) = 0. Furthermore, for the motion inside a box with boundaries atx = a

andx = b and Dirichlet boundary conditions on both sides one obtains(a < x < b) [6–8]

i

h̄

∫ ∞
0

dt eiET/h̄
∫ x(t ′′)=x ′′

x(t ′)=x ′
D(DD)(a<x<b)x(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (x)] dt

}

=

∣∣∣∣∣∣∣
G(V )(x ′′, x ′;E) G(V )(x ′′, b;E) G(V )(x ′′, a;E)
G(V )(b, x ′;E) G(V )(b, b;E) G(V )(b, a;E)
G(V )(a, x ′;E) G(V )(a, b;E) G(V )(a, a;E)

∣∣∣∣∣∣∣∣∣∣∣ G(V )(b, b;E) G(V )(b, a;E)
G(V )(a, b;E) G(V )(a, a;E)

∣∣∣∣
. (30)
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3.5. Neumann boundary conditions

In an obvious way we can also obtain a path-integral representation in the half-spacex > a,
say, with Neumann boundary conditions atx = a by lettingβ →−∞ in (26) [16, 17]

i

h̄

∫ ∞
0

dt eiET/h̄
∫ x(t ′′)=x ′′

x(t ′)=x ′
D(N)(x>a)x(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (x)] dt

}
= G(V )(x ′′, x ′;E)− G

(V )
,x ′ (x

′′, a;E)G(V )
,x ′′ (a, x

′;E)
Ĝ
(V )
,x ′x ′′(a, a;E)

. (31)

The same procedure as for the motion in a boxa < x < b with Dirichlet boundary conditions
at both boundaries, can be applied for Neumann boundary conditions at both boundaries

i

h̄

∫ ∞
0

dT eiET/h̄
∫ x(t ′′)=x ′′

x(t ′)=x ′
D(NN)(a<x<b)x(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (x)] dt

}

=

∣∣∣∣∣∣∣∣
G(V )(x ′′, x ′;E) G

(V )
,x ′ (x

′′, b;E) G
(V )
,x ′ (x

′′, a;E)
G
(V )
,x ′′ (b, x

′;E) Ĝ
(V )
,x ′x ′′(b, b;E) G

(V )
,x ′x ′′(b, a;E)

G
(V )
,x ′′ (a, x

′;E) G
(V )
,x ′x ′′(a, b;E) Ĝ

(V )
,x ′x ′′(a, a;E)

∣∣∣∣∣∣∣∣∣∣∣∣ Ĝ(V )
,x ′x ′′(b, b;E) G

(V )
,x ′x ′′(b, a;E)

G
(V )
,x ′x ′′(a, b;E) Ĝ

(V )
,x ′x ′′(a, a;E)

∣∣∣∣
. (32)

Similarly, we obtain for Dirichlet boundary conditions atx = a, and Neumann boundary
conditions forx = b in the boxa < x < b

i

h̄

∫ ∞
0

dT eiET/h̄
∫ x(t ′′)=x ′′

x(t ′)=x ′
D(DN)(a<x<b)x(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (x)] dt

}

=

∣∣∣∣∣∣∣∣
G(V )(x ′′, x ′;E) G

(V )
,x ′ (x

′′, b;E) G(V )(x ′′, a;E)
G
(V )
,x ′′ (b, x

′;E) Ĝ
(V )
,x ′x ′′(b, b;E) G

(V )
,x ′′ (b, a;E)

G(V )(a, x ′;E) G
(V )
,x ′ (a, b;E) G(V )(a, a;E)

∣∣∣∣∣∣∣∣∣∣∣∣ Ĝ(V )
,x ′x ′′(b, b;E) G

(V )
,x ′′ (b, a;E)

G
(V )
,x ′ (a, b;E) G(V )(a, a;E)

∣∣∣∣
. (33)

Radial boxes and rings can be taken into account as well, and potentials with absolute value
dependence by combining the results for Dirichlet and Neumann boundary conditions, i.e. [17]

i

h̄

∫ ∞
0

dT eiET/h̄
∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 − V (|x|)] dt

}
= G(V )(x ′′, x ′;E)− G

(V )(x ′′, 0;E)G(V )(0, x ′;E)
2G(V )(0, 0;E)

−G
(V )
,x ′ (x

′′, 0;E)G(V )
,x ′′ (0, x

′;E)
2Ĝ(V )

,x ′x ′′(0, 0;E)
. (34)

4. Examples

It is not possible, except in the simplest examples, to explicitly state the propagator in closed
form. Generally only the free particle case can be treated.
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4.1. Relativistic point interaction

We consider the unperturbed free particle; the explicit expression forG(0)(E) has the form
[11]

G(0)(x ′′, x ′;E) = i

2ch̄

(
ζ sign(x ′′ − x ′)

sign(x ′′ − x ′) 1/ζ

)
eik|x ′′−x ′| (35)

whereζ = (E +mc2
)
/ckh̄, ckh̄ = √E2 −m2c4. This yields for aδ-function perturbation in

the electron component,

G(δ+)(x ′′, x ′;E) = i

2ch̄

(
ζ sign(x ′′ − x ′)

sign(x ′′ − x ′) 1/ζ

)
eik|x ′′−x ′|

− αeik(|x ′′−a|+|a−x ′|)

4ch̄(ch̄− iαζ/2)

(
ζ 2 ζ sign(x ′′ − a)

ζ sign(a − x ′) sign(x ′′ − a) sign(a − x ′)
)
. (36)

For [α] > 0 there is one bound state with energyE = mc2
(
1− λ2

)/(
1 + λ2

)
(λ = α/2ch̄).

Similarly, for aδ-function perturbation in the positron component

G(δ−)(x ′′, x ′;E) = i

2ch̄

(
ζ sign(x ′′ − x ′)

sign(x ′′ − x ′) 1/ζ

)
eik|x ′′−x ′|

+
2m2βeik(|x ′′−a|+|a−x ′|)

h̄(2h̄3 + 4im2cβ/ζ )

(
sign(x ′′ − a) sign(a − x ′) sign(a − x ′)/ζ

sign(x ′′ − a)/ζ 1/ζ 2

)
.

(37)

For [β] > 0 there is one bound state with energyE = −mc2
(
1−λ2

)/(
1+λ2

)
(λ = 2m2cβ/h̄3).

4.2. δ-function

Let us consider a simpleδ-function potential in the path integral. We obtain the solution
[12–14, 22, 23, 35–37]∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 + γ δ(x)
]

dt

}
=
√

m

2π ih̄T
exp

[
im

2h̄T
(x ′′ − x ′)2

]
+
mγ

2h̄2 exp

(
−mγ
h̄2 (|x ′′ − a| + |x ′ − a|) +

i

h̄

mγ 2

2h̄2 T

)
× erfc

[√
m

2ih̄T

(
|x ′′ − a| + |x ′ − a| − i

h̄
γ T

)]
. (38)

Some more examples have been investigated in [14], and the case of the harmonic oscillator
with a δ-function in [38].

4.3. δ′-function

Let us consider aδ′-function potential in the path integral (and the notionδ′-function should
not to be taken too literally [11]. We obtain the solution [10, 17]∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) exp

{
i

h̄

∫ t ′′

t ′

[
1
2mẋ

2 + βδ′(x − a)] dt

}
=
√

m

2π ih̄T
exp

(
im

2h̄T
|x ′′ − x ′|2

)
+ sign(x ′′ − a) sign(x ′ − a)

×
(√

m

2π ih̄T
exp

[
im

2h̄T
(|x ′′ − a| + |x ′ − a|)2

]
sign(x ′′ − a) sign(x ′ − a)
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+
h̄2

2mβ
exp

[
− h̄

2

mβ
(|x ′′ − a| + |x ′ − a|) +

i

h̄

h̄6

2m3β2
T

]
× erfc

{√
m

2ih̄T

[
(|x ′′ − a| + |x ′ − a|)− ih̄3T

m2β

]})
(39)

= h̄2

mβ
exp

[
− h̄

2

mβ
(|x ′′ − a| + |x ′ − a|) +

i

h̄

h̄6

2m3β2
T

]
× sign(x ′′ − a) sign(x ′ − a)
+

1

2π

∫
R

dp exp

(
−i
p2h̄

2m
T

)(
sinpx ′ sinpx ′′ + cospx ′ cospx ′′

+
impβ/h̄2

1 + ipmβ/h̄2 eip(|x ′−a|+|x ′′−a|) sign(x ′′ − a) sign(x ′ − a)
)
. (40)

4.4. Motion in a box: Dirichlet–Dirichlet boundary conditions

Let us consider free motion in a box with Dirichlet boundary conditions atx = −b andx = b.
The general method gives for the Green function (κ = √−2mE/h̄)

G(DD)(x ′′, x ′;E) = 1

h̄

√
− m

2E

cosh[κ(|x ′′ − x ′| − 2b))] − cosh[κ(x ′′ + x ′)]
sinh(2κb)

. (41)

The energy spectrum follows from the poles of the Green function yielding

En = h̄2

2m

π2n2

4b2
n ∈ N. (42)

By means of the Laplace transformation pair [39], p 224,

23

(
1

2
+
x

2l

∣∣∣∣ iπτl2
)
⇔ l√

s

cosh
(
z
√
s
)

sinh
(
l
√
s
) |x| < l (43)

I obtain for the propagator the following representations:

K(DD)(x ′′, x ′; T ) =
√

m

2π ih̄T

∑
n∈Z

{
exp

[
im

2h̄T
(x ′′ − x ′ + 4nb)2

]
− exp

[
im

2h̄T
(x ′′ + x ′ + 2(2n + 1)b)2

]}
(44)

= 1

4b

[
23

( |x ′′ − x ′|
4b

∣∣∣∣− πh̄T8mb2

)
−23

(
x ′′ + x ′

4b
+

1

2

∣∣∣∣− πh̄T8mb2

)]
(45)

= 1

b

∞∑
n=1

exp

(
−ih̄T

π2n2

8mb2

)
sin

[
πn

2b
(x ′ + b)

]
sin

[
πn

2b
(x ′′ + b)

]
(46)

and I have used some properties of the Jacobi theta function23(z|q).

4.5. Motion in a box: Neumann–Neumann boundary conditions

Let us consider as the next example free motion in a box with Neumann boundary conditions
atx = −b andx = b. The general method gives for the Green function (κ = √−2mE/h̄)

G(NN)(x ′′, x ′;E) = 1

h̄

√
− m

2E

cosh[κ(|x ′′ − x ′| − 2b))] + cosh[κ(x ′′ + x ′)]
sinh(2κb)

. (47)
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The energy spectrum follows from the poles of the Green function, yielding

En = h̄2

2m

π2n2

4b2
n ∈ N0. (48)

By means of the same Laplace transformation pair as before I obtain for the propagator the
following representations (ε0 = 1, εn = 1, n ∈ N0):

K(NN)(x ′′, x ′; T ) =
√

m

2π ih̄T

∑
n∈Z

{
exp

[
im

2h̄T
(x ′′ − x ′ + 4nb)2

]
+ exp

[
im

2h̄T
(x ′′ + x ′ + 2(2n + 1)b)2

]}
(49)

= 1

4b

[
23

( |x ′′ − x ′|
4b

∣∣∣∣− πh̄T8mb2

)
+23

(
x ′′ + x ′

4b
+

1

2

∣∣∣∣− πh̄T8mb2

)]
(50)

= 1

2b

∞∑
n=0

εn exp

(
−ih̄T

π2n2

8mb2

)
cos

[
πn

2b
(x ′ + b)

]
cos

[
πn

2b
(x ′′ + b)

]
. (51)

4.6. Motion in a box: Dirichlet–Neumann boundary conditions

Let us finally consider free motion in a box with Dirichlet boundary conditions atx = −b and
Neumann boundary conditions atx = b. The general method gives for the Green function
(κ = √−2mE/h̄)

G(DN)(x ′′, x ′;E) = −1

h̄

√
− m

2E

sinh[κ(|x ′′ − x ′| − 2b))] − sinh[κ(x ′′ + x ′)]
cosh(2κb)

. (52)

The energy spectrum follows from the poles of the Green function, yielding

En = h̄2

2m

π2
(
n + 1

2

)2
4b2

n ∈ N0. (53)

By means of the Laplace transformation pair [39], p 224,

22

(
1

2
+
x

2l

∣∣∣∣ iπτl2
)
⇔ − l√

s

sinh
(
z
√
s
)

cosh
(
l
√
s
) |x| < l (54)

I obtain for the propagator the following representations:

K(DN)(x ′′, x ′; T ) =
√

m

2π ih̄T

∑
n∈Z
(−1)n

{
exp

[
im

2h̄T
(x ′′ − x ′ + 4nb)2

]
− exp

[
im

2h̄T
(x ′′ + x ′ + 2(2n + 1)b)2

]}
(55)

= 1

4b

[
22

( |x ′′ − x ′|
4b

∣∣∣∣− πh̄T8mb2

)
−22

(
x ′′ + x ′

4b
+

1

2

∣∣∣∣− πh̄T8mb2

)]
(56)

= 1

b

∞∑
n=0

exp

(
−ih̄T

π2
(
n + 1

2

)2
8mb2

)
sin

[
π
(
n + 1

2

)
2b

(x ′ + b)
]

× sin

[
π
(
n + 1

2

)
2b

(x ′′ + b)
]
. (57)
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5. Summary

In this contribution I have shown the various features of point interactions in the path integral.
I have started from the path-integral representation of the one-dimensional Dirac particle
with a point interaction incorporated. By considering two kinds of point interactions I have
been able to derive the corresponding Green functions by means of an exact summation of
a perturbation expansion which served as the building blocks for further investigation. In
the general case of multiple point interactions it seems not to be possible to derive a simple
determinant expression as for the non-relativistic case. One obtains a matrix whose entries
are determinants within determinants, etc. In the non-relativistic limit they corresponded
to a δ- and aδ′-function perturbation, respectively. Of course, all the corresponding Green
functions represent Krein’s formula. The path-integral approach shows in a nice way that
in comparison to the Schrödinger equation approach a properly defined (and regularized, if
necessary) path integral provides a global picture of the problem. However, whereas Krein’s
formula is usually derived by means of functional analytical methods [11], we obtain then
by a summation of a perturbation expansion. The necessary ingredients are the path-integral
formulation of the one-dimensional Dirac particle, including its non-relativistic limit, and
the knowledge of the Green function for the one-dimensional Dirac particle. No further
assumptions have been made. The outcome of the regularization scheme, in particular, for
theδ′-function perturbation is quite satisfactory, and it shows that the ‘sum over paths’ in an
exact summation of a perturbation expansion offers possibilities for the solution of problems
which go beyond the usual ‘Gaussian sum over paths’. I could derive the general feature of
the Green function for the four-parameter family point interaction for the one-dimensional
Dirac particle thus providing a unified approach. Of course, the four formulae (11), (13)–
(15) can be combined yielding more complicated point interactions, respectively boundary
conditions for the relativistic and the non-relativistic case as well. Considering the non-
relativistic limit, the corresponding (parametrized) point interactions for a one-dimensional
Schr̈odinger particle can been derived. The limit of infinitely repulsive point interactions
has yielded Dirichlet and Neumann boundary conditions, respectively. I have demonstrated
the technique by several examples, and for the cases where the propagator could be stated
explicitly. The presented approach generalizes previous attempts by a systematic description
of the incorporation of boundary conditions at finite distances form the origin. It can include
Dirichlet and Neumann boundary conditions for Cartesian or radial boxes and rings, shell
interactions in radial problems, by taking into account all parameters of the four-parameter
family in a successive way. The final result in all cases is the Green function of the problem,
from which the bound state energy levels and wavefunctions can be determined in a unique
way: the bound states are derived form the poles of the Green function, e.g.Dα1α2(En) = 0
in (20) and the scattering states by the cut in the Green function. Therefore it is possible to
incorporate general boundary conditions in the path integral in an explicit way by means of a
singular perturbation.
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